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Presentation Outline

z Relevance of the Demonstrated Technology

z Integration Requirements for the Demonstration

z Details about the Technologies underlying the Demonstration

z Demonstrations

� #1 Detect and Kill Malicious or Erroneous Packets

� #2 Demonstrate the predictive power of AVNMP when 
combined with NIST CPU usage prediction models

z Accomplishments and Lessons Learned

z Future Research
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Relevance of  the Technology

FAULT RESILIENCY OVERLOAD PREDICTION

INTEROPERABLE MANAGEMENT OF HETEROGENEOUS RESOURCES
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Integration Requirements
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What’s Ahead

z What is AVNMP and how does it work? (Steve Bush)

z How is AVNMP integrated with the Magician EE? (Amit Kulkarni)

z How does NIST model CPU usage? (Kevin Mills)

z How are NIST CPU models integrated with Magician? (Amit Kulkarni)

z Does this integrated technology work?

� #1 Detect and Kill Malicious or Erroneous Packets (Amit Kulkarni)
� #2 Demonstrate the predictive power of AVNMP when 

combined with NIST CPU usage prediction models (Steve Bush)

z What was accomplished and what lessons were learned? (Kevin Mills)

z What are some ideas for future research? (Kevin Mills and Steve Bush)



12/06/00 7

MIB holds both current and future state.MIB holds both current and future state.

Self prediction
Communication networks that can predict their own behavior!

What Is AVNMP?

Active Packet

Network 
Management Client getnext 1.3.6.1.x.x.x.x.now

getnextresponse 1.3.6.1.x.x.x.x.future

Managed Object

MIB

State Queue (SQ)
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¾Optimal management polling interval is determined based upon 
predicted rate of change and fault probability

¾ Fault correction will occur before system is impacted

¾ Time to perform dynamic optimization of repair parts, service, and 
solution entity (such as software agent or human user) co-ordination

¾Optimal resource allocation and planning

¾ “What-if” scenarios are an integral part of the network

¾AVNMP-enhanced components protect themselves by taking action, 
such as migrating to “safe” hardware before disaster occurs

Some Uses for Self Prediction
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� Prediction ends when preset look ahead is reached
� Previous predictions are refined as time progresses

Cyclic Prediction Refinement
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AVNMP Architecture
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AVNMP Algorithm
¾ Prediction performance continuously kept 

within tolerance via rollback

¾ Time Warp-like technique used for 
maximum use of space and time in virtual 
system

¾ Rollback State Cache holds MIB future 
values

¾ Active Networks and Active Virtual 
Network Management Prediction: A 
Proactive Management Framework, Bush, 
Stephen F. and Kulkarni, Amit B. 
Kluwer Academic\Plenum Publishers. 
Spring 2001. ISBN 0-306-46560-4

¾ But how do AAs, such as AVNMP, 
communicate with each other, and with
the EE? Two mechanisms:
� Event reporting
� SNMP communication
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*note that AVNMP can run as a local or remote AA.
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Legacy Application

Active SNMP Interface

SNMP 
Port

SNMP 
Client

AA

M
IB

 A
gent Interface

SNMP Agent

SmallState*

Get/Set

M
IB

 A
gent Interface

* Magician transient or soft state available to AAs
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Overview of NIST Research

z Identified Sources of Variability Affecting CPU Time Use by
Active Applications

z Developed a Mechanism for Monitoring and Measuring CPU 
Time Use by Active Applications

z Developed and Evaluated Models to Characterize CPU Use      
by Active Applications

z Developed and Evaluated a Technique to Scale Active 
Application Models for Interpretation among Heterogeneous Nodes
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Sources of Variability
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Measuring AA Executions

Trace is a series of system calls and 
transitions stamped with CPU time use

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Generate 
Execution Trace

Monitor at
System Calls 

in Active Node OS

…
begin, user (4 cc), read (20 cc), user (18 cc), 
write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user (18 cc), �
kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user (8 cc), 
kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user (18 cc), 
write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user (17 cc), 
kill (20 cc), user (8 cc), end
…
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Modeling AA Executions

Scenario A: 
sequence = “read-write”, 
probability = 2/5

Scenario B: 
sequence = “read-kill”, 
probability = 3/5

Distributions of CPU time in system calls 
:

Generate
Active Application Model

Distributions of CPU time between system calls :

…
begin, user (4 cc), read (20 cc), user 
(18 cc), write(56 cc), user (5 cc), end

begin, user (2 cc), read (21 cc), user 
(18 cc), kill (6 cc), user (8 cc), end

begin, user (2 cc), read (15 cc), user 
(8 cc), kill (5 cc), user (9 cc), end

begin, user (5 cc), read (20 cc), user 
(18 cc), write(53 cc), user (5 cc), end

begin, user (2 cc), read (18 cc), user 
(17 cc), kill (20 cc), user (8 cc), end
…
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P
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write kill
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cc

P
read-kill

write-end

begin-read read-write

kill-end

Consume
Execution Trace
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Evaluating AA Models

Statistically Compare 
Simulation Results 

against Measured Data

Simulate Model with 
Monte Carlo Experiment

The Average Absolute Deviation (in Percent) of Simulated Predictions from Measured Reality for  
Each of Two Active Applications in Two Different Execution Environments Running on One Node 

(Average High Percentile Considers Combined Comparison of  80th, 85th 90th, 95th, and 99th

Percentiles) –Results Given for Models Composed Using Three Different Combinations of Bin 
Granularity (bins) and Simulation Repetitions (reps)
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Scaling AA Models

AA model on node X:
read  30 cc
user  10 cc
write 20 cc

Model of node X:
read  40 cc
write 18 cc
user  13 cc

Model of node Y:
read  20 cc
write 45 cc
user   9 ccscale

AA model on node Y:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc

z Each Node Constructs a Node Model using two benchmarks:
� a system benchmark program ⌫ for each system call, average system time 
� for each EE, a user benchmark program ⌫ average time spent in the EE 

between system calls
z To scale an AA Model select one Node Model as a reference known by 

all other active nodes
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Evaluating Scaled AA Models

Prediction Error Measured when Scaling Application Models between Selected Pairs of Nodes 
vs. Scaling with Processor Speeds Alone
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Implementing AA Models in Magician

Scheduler Resource
Manager

NIST CPU
Usage Model 
data

Active Packets

Magician EE

Active
Applications

mean & variance 
& high percentiles

Predictor

expected
running

time

CPU usage
monitoring

CPU usage
control
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Demonstration #1 Overview

� Illustrate motivation behind CPU usage modeling

� Compare three policies to enforce limits on CPU consumption

� Show improvement of NIST CPU usage models over naïve 
scaling (which is based solely on relative processor speeds)

Detect and Kill Malicious or Erroneous Active Packets 
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Topology for Demonstration #1

Audio stream (active packets)

All nodes on the ABONE and running the Magician EE

Sending
node

Fastest
Intermediate

Node

Destination
node

Slowest
Intermediate

Node

Green Black Red Blue

Detect and Kill Malicious or Erroneous Active Packets 
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Demonstration #1 Policy #1
Detect and Kill Malicious or Erroneous Packets

Demonstration compares three policies to enforce limits on CPU consumption

Policy 1: Use CPU time to live set to fixed value per packet

Malicious Packet dropped too late 
(CPU use reached TTL)

TTL

Normal execution time CPU time “stolen”

Fastest
Intermediate

Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Good packet dropped early
(CPU use reached TTL)

TTL

CPU time
“wasted”

Additional CPU 
time needed
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Demonstration #1 Policy #2
Detect and Kill Malicious or Erroneous Packets

Demonstration compares three policies to enforce limits on CPU consumption

Policy 2: Use a CPU usage model, but scaled naively based solely on CPU speed

Fastest
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Node

Slowest
Intermediate

Node

Destination
node

Sending
node

Malicious
packet

Good
packets

Good
packets

Malicious Packet dropped too late 
(CPU use reached predicted limit)
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Predicted 99% CPU

Good packet dropped early
(CPU use reached predicted limit)

TTL
Predicted 99% CPU

CPU time 
possibly “wasted”

Additional CPU 
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Demonstration #1 Policy #3
Detect and Kill Malicious or Erroneous Packets

Demonstration compares three policies to enforce limits on CPU consumption

Policy 3: Use a well-scaled NIST CPU usage model
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Node
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Summary of Demonstration #1
Detect and Kill Malicious or Erroneous Packets

High Fidelity Naïve Scaling
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Demonstration #2 Overview

� Show that AVNMP can predict network-wide resource consumption

� Compare accuracy of AVNMP CPU usage predictions with and 
without the NIST CPU usage models

� Illustrate benefits when AVNMP provides more accurate predictions

Predict Resource Usage, Including CPU Time, 
Throughout an Active Network
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Topology for Demonstration #2

Predict Resource Usage, Including CPU Time, 
Throughout an Active Network
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Demonstration #2
Predict Resource Use, Including CPU, Throughout an Active Network

Demonstrate predictive power of AVNMP and improvement in predictive power 
when combining NIST CPU usage models with AVNMP

And so AVNMP can predict CPU usage in the network further into the future

With the NIST CPU usage model integrated, AVNMP requires fewer rollbacks 
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Predictor
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Slowest
Intermediate

Node
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Summary of Demonstration #2
Predict Resource Use, Including CPU, Throughout an Active Network

TTL CPU Prediction

Better CPU prediction model overcomes performance tradeoff limitations
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Accomplishments
z Demonstrated the ability to detect and kill malicious or erroneous active 

packets
� Illustrated motivation behind CPU usage modeling
� Compared three policies to enforce limits on CPU consumption
� Showed improvement of NIST CPU usage models over naïve scaling

z Demonstrated management of CPU prediction and control of packets on 
per-application basis  by an EE (Magician probably the first of its kind)

z Demonstrated the power of AVNMP to predict resource usage, including 
CPU, throughout an active network

� Showed that AVNMP can predict network-wide resource consumption 
� Compared accuracy of AVNMP CPU usage predictions with and 

without the NIST CPU usage models
� Illustrated benefits when AVNMP provides more accurate predictions

z Developed MIB for CPU and AVNMP Management of an active node

z Integrated SNMP agents and reporting in an EE
� Provided user-customizable event reporting through multiple 
mechanisms: Event Logger and SNMP



12/06/00 35

Lessons Learned
z DO NOT KEEP MODIFYING your demo code two days before the 

demonstration, especially when you are depending on detailed 
measurements of the code

� Every AA change requires execution traces to be rerun
� Every EE change requires execution traces and node calibrations to be rerun
� In addition, new models must be generated for each platform
� The good news – we were still able to do this

z NIST CPU benchmark tool should be made available in packaged form for  
rapid and easy use.

z Active Networks Architecture requires a standard interface for any EE
to measure and control resource use by AAs

� Working with two different EEs required these issues to be addressed uniquely
for each EE

� Using one technique to measure CPU use for AA model generation and 
another to measure CPU use in running AAs introduced unnecessary error

z Need to increase precision when CPU control mechanism terminates active packet 
(will Real-Time Java solve this?)

z Introduction of another roll-back variable suggests that AVNMP can prove even 
more efficient if roll-backs can be conducted independently on each class of variable
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NIST Future Research

z Improve Our Models
� Model Node-Dependent Conditions
� Attempt to Characterize Errors Bounds 
� Improve the Space-Time Efficiency of Our Models
� Continue Search for Low-Complexity Analytically Tractable Models
� Investigate Models that Continue to Learn

z Investigate Competitive-Prediction Approaches
� Run Competing Predictors for Each Application
� Score Predictions from Each Model and Reinforce Good Predictors
� Use Prediction from Best Scoring Model

z Apply Our Models
� CPU Resource Allocation Control in Node OS
� Network Path Selection Mechanisms that Consider CPU Requirements
� CPU Resource Management Algorithms Distributed Across Nodes
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Denial of Service Attacks
Can a combination of AVNMP load prediction and NIST CPU prediction be

used to combat denial of service attacks?

Many small packets

NIST CPU
Large 
CPU packets

AVNMP

Attacker

Legitimate Data

Target

Legit 
User
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z Network management today is 
centralized…should be distributed

z Fault detection and correction are 
generally manual activities -- at best 
scripted…should be inherent to 
network behavior

z Unstable/Brittle…should be 
stable/ductile

z Management is external to the 
network…should be inherent part of 
the network

GE Future Research

Monitor & 
Control

Management 
Station

Managed Entities

Goal: Large Networks with Inherent Management CapabilitiesGoal: Large Networks with Inherent Management Capabilities
z Number of predicted objects will increase drastically -- many more than 

simply load and CPU -- see a typical SNMP MIB for possible number of 
predicted objects.

z Load and CPU have been demonstrated on a handful of nodes; but what 
about thousands of nodes and perhaps multiple futures?

Today: Centralized, Manual, Brittle, External Management SystemsToday: Centralized, Manual, Brittle, External Management Systems
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Desirable Properties of Future Network 
Management Systems

Fault

Portion of Solution

Portion of Solution

Portion of Solution

Portion of Solution

z Identify faults within a complex 
system of management objects

z Scale in number of objects and
number of futures 

z Robust in the presence of faults
z Only necessary and sufficient 

repair capability should exist in 
time and space

Network Inherently Forms Fault Corrective ActionNetwork Inherently Forms Fault Corrective Action

Exceeding “normal” ranges indicates a fault and generates 
attractive force needed to form corrective action.



12/06/00 40

New Theory of Networks Leads

Random (Healthy) incompressible Order (Multiple Faults) compressible

…to Example Applications such as Composition of State into …to Example Applications such as Composition of State into 
Solution AttractorsSolution Attractors
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Active 
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Complexity
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as active packet 
is communication 
media
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AVNMP StreptichronsAVNMP Streptichrons

Algorithmic Information TheoryAlgorithmic Information Theory

ComplexityComplexity

EmergenceEmergence


